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LETTER TO THE EDITOR 

Periodic and wave-like solutions in non-linear lattices 

G Cicogna’T and G GaetaS 
tDipartimento di Fisica, Universita di Pisa, Piazza Torricelli 2, 1-5600 Pisa, Italy 
$ Centre Physique ThBorique, Ecole PolytCchnique, 91 128 Palaiseau, France 

Received 25 May 1989 

Abstract. We consider a lattice system described by a set of non-linear differential equations, 
and we discuss how general lattice properties arld/or symmetries can allow the reduction 
of this problem to a lower-dimensional one, and possibly grant the existence of periodic 
or wave-like solutions. 

We consider a system of lattice (non-linear) differential equations, i.e. 

le =f,O; 5) (1) 

where Q is a multi-index, Q = ( a l ,  a2, . . . , a d ) ,  with ai = 1, . . . , mi, and each component 
is an s-dimensional real vector describing an ‘elementary site’ in the lattice; 5 =  ( ( t )  
is then an N-dimensional ( N  = smlm2.. . md) real vector, and f: R p  x RN + RN is 
assumed to be a non-linear sufficiently smooth (e.g. C“ or polynomial) function. Here, 
A E R p  is a real p-dimensional control parameter, introduced in order that the discussion 
should also include dependence on physical parameters, bifurcation problems, and/or 
possible phase transitions, and so on. 

We want to discuss how general lattice properties and/or symmetries can allow 
the reduction of this problem to a lower-dimensional one, and possibly grant the 
existence of periodic or wave-like solutions. 

For definiteness, we consider periodic lattices, i.e. Q E Zd but such that if & ( k * )  = 
( a l ,  . . . , a k  + mk, . . . , a d )  then = .$a ; however, our considerations would be easily 
extended to infinite lattices. 

Let us first consider, for ease of notation, d = 1, i.e. a one-dimensional lattice, and 
let us impose periodic boundary conditions, say = t1 (so we deal with a chain of 
m sites, N = sm). Clearly, if the sites are equivalent, then f is ‘equivariant’ under the 
shift operator ( m  x m block matrix) 

0 . . .  I 1; 0 . . .  0 

0 0 . . .  0 1: . . .  I 0 

where I is the s-dimensional identity matrix, i.e. it satisfies 

; 5) = f  0; 36) (3)  
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which means in this case that 

for each a = 1, . . . , my with fm+l =fl. 

We now generalise this isotropic case by assuming that there is a connection between 
the a t h  and the ( a + l ) t h  site, described by a set of m real invertible s x s  matrices 
K,  : Rs,)+ RS,+l), such that KmKm-,  . . . K1 = I :  

(with the periodicity condition at the ends, i.e. Km : Rsm)-) Rs,,) in such a way that the 
global problem (1) obeys the following equivariance (or covariance) conditions 

m; 5) = f ( A ;  ( 5 )  

where 

A 

K =  

0 0 . . .  
K1 0 . . .  
0 K2 0 . . .  

0 O I  

e .  

0 0 0 . . .  
0 ... K m - I  

which equivalently expresses, generalising (3’), the following relationship between 
adjacent sites: 

(with fm+l = f i b  
It is now easy to see that, putting 

all the m subsystems become equivalent to the unique s-dimensional problem concern- 
ing a single site 

81=f1(~;51, K 1 & , * * * ) = 4 ( A ;  51). (8) 

Before discussing this reduced system, let us see how this procedure can be extended 
to multidimensional, d > 1, lattices. Consider first a planar rectangular lattice: the 
sites can be labelled by two indices Sap = tap( t )  with a 7 1, . . . , m; p = 1, . . . , n, 
N = smn, and assume that there is a ‘horizontal’ connection H oplerating on each row 
in a similar way as in the linear case, and a ‘vertical’ connection V operating on each 
column. Precisely, in order to be as general as possible, we assume the existence of 
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a net of linear transformations, operating according to the following scheme: 

- 0 - 0 -  
a + l , P - l  a + 1 , p  

I I  
where each dot represents a s-dimensional site, each H g '  and V L P )  are s x s  real 
invertible matrices, and the periodicity conditions 

are assumed. 
tOL,,,+l =tal (Q  = 1 , .  . . , m) 5m;nCl.p = 5 1 p  ( P  = 1, ., n) 

We also require 
H',"'H',*_', . . . Hi"' = I Q = l , .  . ., m 

p = 1,. . . , n v',p'v',?, . . . v',P'= I 
and the following 'compatibility conditions', emerging from (9): 

Writing the global N-dimensional system as a set of mn (s-dimensional) subsystems 

the equivariance under I? and 9 is respectively (no sum over a, p )  

=fu,p+i(A; H?)51n, H ( l l ) t ~ ~ , .  . . H : l i S i , n - i ,  

( 1 1 )  

(12) 

VLP'H'a' - ( m + l )  v u - 1 )  
p - 1 - H P - 1  OL . 

L p  = f a p ( A ;  5 1 1 ,  * * a ,  ( I n ,  521 ,  * * * ,  * * 3 3 5 m n )  

Hb"'f,(A; 5 1 1 , .  . ., * * * > t m n )  

x H',2)52,, . . . , . . . , H j l m ) t m n ,  . . . , H',T\g&l) (13) 
VLP'f,p 0 ; 5 1 1  , . . * , . . 9 5 m n )  

(2) 
= f a + l , p ( ~ ;  V ( n f ) t m l ,  V m  5 m 2 ,  . . * 9 v i 1 ) t 1 1 ,  * * 9 V ( m n l 1 5 m - l , n )  

or, in global notation, 

&(A; 5) = f ( A ;  fit) VY-0; 5) = f ( A ;  Q5). (14) 
It is not difficult to extend this scheme to planar lattices with different lattice 

symmetry, e.g. for triangular lattices 

* - * - > *  
a+1,p-1H:-+i1' a + 1 , p  a+1 ,p+1  

As in the rectangular lattice above, (9) ,  the compatibility conditions to be assumed in 
this case are 

(a+I)D(-)(P-l) = D(-)(P)H(a) - Dh+"P-"* HP-I a 0 p - 1 -  
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Similarly, the extension to three-dimensional lattices (crystals), or possibly even to 
higher-dimensional structures, is straightforward. As above, the various transforma- 
tions are subjected to the condition that the product of transformations along different 
paths joining two sites must give the same result. Alternatively, this may be stated by 
imposing that the composition of a chain of transformations along any closed path, 
must give the identity operator I on the elementary site. It is also clear that it is 
sufficient to impose these conditions only on the elementary lattice structure. 

In the following, for sake of simplicity, we shall refer to the case of planar rectangular 
lattices (9). 

Even in this case, as for the one-dimensional lattice, one can easily reduce the 
original problem to an s-dimensional one. Let us state the result in a theorem. 

Theorem 1. Let the global N-dimensional problem (1) satisfy the equivariance require- 
ments (14) (or equivalently let (12) satisfy (13)), with conditions ( lo ) ,  (11). Then, 
putting for each a = 2 , .  . . , m, and p = 2 , .  . . , n:  

each subsystem becomes equivalent to the unique s-dimensional problem, referred to 
the elementary site, 

ket us ?tress the essential role played in this problem by the equivariance under 
fi, V (or K in the one-dimensional case), inpaFicYlar for the possibility of reducing 
the dimension of the problem; in fact, once H, V ,  K are given, the subspace specified 
by ( 1 9 ,  where solutions are to be found, is precisely the invariant subspace under the 
cyclic groups generated by these operators (cf also [ 1-31). 

Note also that (11) implies that 

f i Q =  Qfi 
and in addition that one can arbitrarily choose n - 1 matrices H F )  for each a (the 
nth is fixed by (10)) and, e.g., m - 1 in the first ‘column’ of matrices V:’, the remainder 
being determined by (11). 

Consider now the reduced problem (16). It is clear that if one is able to find a 
solution to = to( t )  for it, the solution is extended by means of rule (15) to the whole 
lattice. An interesting case would be s = 2: then PoincarC-Bendixson theory [4], or 
standard Hopf bifurcation results [5] can assure the existence of a periodic solution. 
We shall consider this possibility in some detail later. 

Another interesting situation occurs if the system is symmetric under some group 
G. Given a real s-dimensional representation T of G, we can consider the case 

& ( A ;  R 1 1 , 5 1 2 , * * * ,  TSmn)=Tfap(A;511,512,...,5mn) (17) 

f ( A ;  % = & A ;  5) (17‘) 

or equivalently 

where f is the direct sum of mn copies of the representation T. It is natural to assume 
in this case (see also [6], however), for each a, p, that 

H y E  C ( T )  VL?E C( T )  (18) 
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where C (  T )  is the set of matrices commuting with T ;  then, if Tis absolutely irreducible, 
one has H g ’  = V‘,p’ = I and fl, are simply the ‘horizontal’ and ‘vertical’ shifts in the 
lattice. 

It can be noted that, assuming (18), it is sufficient to require that (17) is verified 
only for one site, e.g. for fl l  ; in fact, using (13, 15) one has, e.g., for f12 

f i2(A;  T ~ I I , . . . , . . . ,  T5mn 1 
= Hi1’fl1(A; H V ’ ) - l T ( l n , .  . . , (Hi?!\)-lT&m,fl-l) 

= H ! ’ ’ T ~ ~ I ( A ;  ( ~ ( n l ) ) - ’ 5 1 n ,  * * - I =  ~ f 1 2 ( ~ ;  511, * t m n )  

and similarly for any other site. 
Again with (18), more interesting situations can appear if T is irreducible in the 

real sense but not in the complex one [7], e.g. if T is the standard two-dimensional 
representation of the rotation group S 0 ( 2 ) ,  an example which is closely related to the 
above-mentioned Hopf bifurcation problem, and which we are going to discuss from 
now on. 

Let us consider a planar lattice, with s = 2 ,  which is symmetric under SO(2) 
according to (17), and denote by ŝ , , & the horizontal and vertical shifts in the lattice, 
i.e. the transformations defined by 

H g ) =  1 v‘,p’= 1 Va, P. 
We then have the following lemma. 

Lemma 2. A planar lattice satisfying (17), where T is the standard real two;dimfnsional 
representation of S 0 ( 2 ) ,  is equivariant (in the sensepf (13), (14)) under S,, Sv if and 
only if it is equivariant under the transformations Ho,  Po defined by 

%(e) being the rotation through angle 8. 

Boo$ Using (13) with H g ’  = I, one has, e.g., 

and, as 

and similarly for the other sites, which expresses the covariance under flo. Conversely, 
assuming (13) with H g ’ =  %,,, one has 

etc, i.e. the equivariance under gH . The argument is identical for ‘vertical’ transforma- 
tions. 

The main consequence of this lemma is the following. 

Theorem 3. Consider a planar lattice satisfying the assumptions of lemma 2. Then, 
once a solution to( t )  has been found for the reduced two-dimensional problem, there 
are for the lattice at least four independent periodic solutions, given by 

Hboip) = 3 ( 2 r /  n )  vi!’= % ( 2 r / m )  va, P 

f 1 1 ( A ;  511 ,  * * *I  = f 1 2 ( A ;  51n, * .) 

%flf11(A;  5 1 1 ,  * * .I = f 1 2 ( A ;  Bfl51fl, * * .) 

= % ( 2 r / n )  E T, 

%flf11(A;  511, * * .I = f i 2 @ ;  %?ltlfl, * .) = 9 L f 1 2 0 ;  5 1 f l 9 ’ .  .) 

S 0 p ( t )  = 5 0 ( t )  

5 , p ( t )  = [ 9 f l I P 5 0 ( t )  = 3 ( 2 . r r p / n ) 5 0 ( t )  
Sap ( t )  = [%m ] “ t o (  t )  = 3 (2 ra /  m)50( t )  
t a p  ( t )  = [ B m I ”  [ B n  IP50(t)  = 3 ( 2 r ( a /  m + P /  n ) ) t o (  t ) *  
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The proof of this result follows easily from ( 1 5 ) ,  combining the covariance under 
&, and fro, q0. Note the structure of a ‘wave’ travelling horizontally (vertically) 
shown by the second (third) solution, and of a ’planar’ wave shown by the last one. 
Clearly in the case of a one-dimensional lattice, one finds in this way two independent 
solutions. 

In order to illustrate the above result for a planar lattice, let us consider explicitly 
an example, with a (relatively) few number of components. Let N = 12, m = 2, n = 3, 
and let 

i l l  = g ( A ;  5 1 2 ) + h ( A ;  5 2 2 )  4 1 2  = g ( A ;  6 1 3 )  + h ( A ;  5 2 3 )  

& 3 = g ( A ;  511)+h(A; 5 2 1 )  4 2 1 = g @ ;  5 2 2 ) + h ( A ;  5 1 2 )  

4 2 2  = g o ;  5 2 3 )  + h ( A ;  5 1 3 )  ‘ ! 2 3 = g ( A ;  5 2 1 ) + h ( A ;  ‘$11) 

where g ,  h are arbitrary S0(2)-covariant functions. 

for instance, 
It is easy to verify that this system satisfies all the above assumptions. Choosing, 

g ( A ,  x) = Ax+(x12Jx h(A, x )  = J X + / X ~ ~ X  

where x E R2, A ER, and J = ( y  -A), standard Hopf conditions for the existence of a 
periodic bifurcating solution are verified for the elementary two-dimensional site, and 
the four solutions given by theorem 3 are respectively: 

t I1  = t12 =. . . = 5 2 3  = r( cos 
sin ot 

w = l + r 2  2 A = - r  

cos ut 5 11- 2 1 - r (  - -sinwt ) 
COS (ot+27r/3) cos (wt+4?T/3) 

sin (-ut + 2 ~ / 3 )  5 1 2  = 5 2 2  = r( 

(ii) 
A = - f i - r 2 ( 1 + & )  w = 2 + r 2 ( 1 + d 3 ) / 2  

w = 1 - r 2  2 A = r  

cos ut 
511 = -521  = r( -sin ,,> 

COS (wt+27r/3) ( cos (wt+47r/3)) 
5 1 3 = - 5 2 3 = r  sin(-wt+47r/3) 5 1 2  = - 5 2 2  = r( sin (-wt + 27r/3) ) 

(iii) 

A = -&-2r2 w = 1 + r2( 1 + 8 ) / 2 .  

In this letter, we have intentionally confined our attention to the general aspects 
of the problem, without any intention of specific applications, which in fact would 
deserve a separate and adequate consideration. Let us just mention that the above 
scheme might be suitably applied, for instance, to spin waves, and in particular to 
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Heisenberg-type models with non-linear spin-spin and spin-magnetic field interactions 
(as regards the SO(2) symmetric case); it might be applied as well to waves in crystals, 
in which case the presence of an external constant magnetic field would break the 
global SO(3) symmetry down to SO(2).  

A final remark, which could be especially relevant in these applications, is the 
following. Even if the problem is non-linear, it is known [8] that, under precise 
hypotheses (essentially, some rather general symmetry property, e.g. SO( 2) symmetry, 
and the existence of asymptotic stable solutions), the asymptotic solutions behave 
precisely as solutions of a linear equation: a consequence of this fact is that linear 
superpositions of different waves are allowed in this way. 

One ofthe authors (CG) would like to thank Professor 0 Penrose for a useful discussion. 
The work of GG was supported by a CNR scholarship under grant 203.01.48. 
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